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US Political Landscape: 2020 Election
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Deepening Political Divide?
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Hyper-Partisan News Media

• Partisan and ideological divergence in both content 
and audience

• Four major US news networks
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[Bozell 2004, Hyun and Moon 2016]



The Big 
Three on 
YouTube
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The Rising 
Star
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Newsworthy Events, Topics, and Discussions
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Everything that is going 
on in the universe

Response to 
news eventsEvents interesting to the 

United States



A Novel, Rich Data Set: Text Response to 
News Events 

More than 85 million comments posted on 200K+ videos 
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How Do We Shed Light on Polarization?

• Open research challenge: How can we quantify 
differences between these large-scale social media 
discussion data sets? 
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Polarization

• Widely studied in social science

• Seminal work in political science that has used 
congressional votes to measure polarization

• Research in computational linguistics focusing on 
mass-shootings 

• No prior work on quantifying polarization on large 
scale discussion data sets discussing a multitude of 
issues 
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[McCarty, Poole, Rosenthal; 2006]

[Demszky, Garg, Voigt, Zou, Shapiro, Gentzkow, Jurafsky; 2019]



Step 1: A Simple Measure to Track 
Polarization from Video Engagement

• A simple measure 

– Compute 
𝑑𝑖𝑠𝑙𝑖𝑘𝑒

𝑙𝑖𝑘𝑒+𝑑𝑖𝑠𝑙𝑖𝑘𝑒
of a given video

• Take average of this value over all videos uploaded in 
a month for any given news network 

• Interpretation: values closer to 0.5 indicate 
viewership has divided opinion
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Advantages 

• Advantages 

– 0 ≤
𝑑𝑖𝑠𝑙𝑖𝑘𝑒

𝑙𝑖𝑘𝑒+𝑑𝑖𝑠𝑙𝑖𝑘𝑒
≤ 1 , mean of bounded variables is also 

bounded

– One arbitrarily heavily liked or disliked video doesn’t 
influence the overall trend by much 

12



Temporal Trends
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How To Quantify Disagreement in Text Data?

• Can we focus on one of the most basic units of 
language – the words? 

• Count the number of words that mean different 
things to two communities? 

• The larger this number the higher the disagreement
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The Idea

• Assume two sub-communities are speaking in two 
different languages: 𝐿𝑐𝑛𝑛 and 𝐿𝑓𝑜𝑥

• Translate each word belonging to 𝐿𝑐𝑛𝑛 to 𝐿𝑓𝑜𝑥
– Ideally, apple should translate to apple

– tree should translate to tree
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What if it Doesn’t?

• 𝑤1in 𝐿𝑐𝑛𝑛 and 𝑤2 in 𝐿𝑓𝑜𝑥 are used in very similar 

contexts 
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Machine Translation Meets Polarization

• Assume two sub-communities are speaking in two 
different languages: 𝐿𝑐𝑛𝑛 and 𝐿𝑓𝑜𝑥

• Translate each word belonging to 𝐿𝑐𝑛𝑛 to 𝐿𝑓𝑜𝑥
– Count the number of misaligned pairs (i.e., words that do 

not translate to themselves)

– The fewer this number, the greater is the similarity 
between the two sub-communities 
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Word Embeddings

• A continuous representation of words in high-
dimensional space 

• Words that appear in similar contexts are (typically) 
placed close to each other

• Skip-gram embeddings: predicts an input word’s 
context 

• Two words having similar embeddings imply they are 
used in similar contexts
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[Mikolov, Chen, Corrado, Dean 2013]



Few Examples

• Nearest neighbors of the word amazing
– incredible 

– wonderful

– fantastic

– awesome

– phenomenal

– remarkable

– great

– amazingly

– brilliant

– outstanding
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Few Examples

• Nearest neighbors of the word car
– vehicles 

– cars

– truck

– accidents

– driver

– motor

– bike

– ambulance

– driving

– crashes
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Alignment Based Machine Translation

• Word embeddings of two (monolingual) corpora of two 
different languages

• A set of anchor words (bilingual dictionary)

– <hola, hello>

– <pescado, fish>

– <gracias, thanks>

– <lucha, fight>

– <gato, cat> 

• Learn a transformation W such that embedding of source 
word 𝑤𝑠𝑜𝑢𝑟𝑐𝑒 when multiplied by W yields 𝑤𝑡𝑎𝑟𝑔𝑒𝑡
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A Classic Paper on This Idea
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[Mikolov, Le, Sutskever ArXiv2013]



Formally

• Let 𝐿𝑠𝑜𝑢𝑟𝑐𝑒 and 𝐿𝑡𝑎𝑟𝑔𝑒𝑡 be two languages with vocabularies 

𝑉𝑠𝑜𝑢𝑟𝑐𝑒 and 𝑉𝑡𝑎𝑟𝑔𝑒𝑡, respectively

• The translation scheme 𝐿𝑠𝑜𝑢𝑟𝑐𝑒 → 𝐿𝑡𝑎𝑟𝑔𝑒𝑡 computes a 

transformation W and takes a word 𝑤𝑠𝑜𝑢𝑟𝑐𝑒 ∈ 𝑉𝑠𝑜𝑢𝑟𝑐𝑒 as 
input and outputs a single-word translation 𝑤𝑡𝑎𝑟𝑔𝑒𝑡 such that

– 𝑤𝑡𝑎𝑟𝑔𝑒𝑡 ∈ 𝑉𝑡𝑎𝑟𝑔𝑒𝑡

– ∀𝑤 ∈ 𝑉𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑑𝑖𝑠𝑡 𝑤𝑠𝑜𝑢𝑟𝑐𝑒
𝑒 𝑊,𝑤𝑒 ≥ 𝑑𝑖𝑠𝑡(𝑤𝑠𝑜𝑢𝑟𝑐𝑒

𝑒 𝑊,𝑤𝑡𝑎𝑟𝑔𝑒𝑡
𝑒 )

• Cosine distance is used as 𝑑𝑖𝑠𝑡(. )
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Our Process

• Sub-sample to create two corpora of equal size 
– Why? Embedding quality may vary with corpus size

• Two sets of word embeddings (say Fox and CNN)

• Stop-words (e.g., and, about, or …) as anchor words 

• Align them using a well-known method 
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[Smith, Turban, Hamblin, Hammerla; 2017]



𝑉𝑠𝑜𝑢𝑟𝑐𝑒, 𝑉𝑡𝑎𝑟𝑔𝑒𝑡 and Evaluation

• 𝑉𝑠𝑜𝑢𝑟𝑐𝑒 set to most frequent 5K words of the 
combined corpora

• 𝑉𝑡𝑎𝑟𝑔𝑒𝑡 set to most frequent 10K words of the 

combined corpora 

• Compute the percentage of 𝑉𝑠𝑜𝑢𝑟𝑐𝑒 that translates to 
itself

• Higher the value, better agreement
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Misaligned Pairs from CNN to Fox
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<KKK, BLM>
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“Big Three” News Channels
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“Big Three” News Channels
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• CNN is closer to MSNBC than Fox



“Big Three” News Channels
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• Fox is closer to CNN than MSNBC 



“Big Three” News Channels
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• MSNBC is closer to CNN than Fox 



“Big Three” News Channels
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FoxCNNMSNBC



All Four News Networks
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FoxCNNMSNBC OANN



The Other 
Sources of 
News
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Primetime Comedies
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Placing Comedy Along the Political 
Spectrum 
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FoxCNNComedyMSNBC



The Efficiency Argument
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• Solar (𝐿𝑐𝑛𝑛) translates to fossil (𝐿𝑓𝑜𝑥)

• Mask (𝐿𝑓𝑜𝑥) translates to muzzle (𝐿𝑜𝑎𝑛𝑛)



Beyond Single Word

• Black lives matter in 𝐿𝑐𝑛𝑛 is closer to all lives matter 
in 𝐿𝑓𝑜𝑥 than black lives matter
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The Big Picture

• Different words may be used in near-identical 
contexts in different communities

• Such words may inform us about fundamental 
differences between the communities

• Machine translation methods provide a powerful, 
interpretable, and quantifiable framework 
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Questions ☺
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